

FACULTY: Basic and Applied Sciences

DEPARTMENT: Physical and Chemical Sciences

FIRST SEMESTER EXAMINATIONS

2018/2019 ACADEMIC SESSION

COURSE CODE: PHY 211

COURSE TITLE: COMPUTATIONAL PHYSICS

DURATION: 2 HOURS

Instruction: Attempt any 4 of the 5 questions

Question one

Use the trapezium rule with four ordinates to find an approximate value for (i) $\int_0^6 3(2^x + 1) dx$ (ii) $\int_{1.5}^6 x^2 \sqrt{x^2-1} dx$ (iii) $\int_0^3 \sqrt{2^x} dx$ giving your answer to three significant figures.

Question two

Use Simpson rule to (a) evaluate $\int_0^{\pi/2} \sqrt{\sin x} \, dx$ with n=4 (b) evaluate $\int_0^{12} \sqrt{1 + x^2} \, dx$ (c) $\int_0^{\pi} 1 \sqrt{1 + x^2} \, dx$ (d) $\int_0^{\pi} 1 \sqrt{1 + x^2} \, dx$ (e) $\int_0^{\pi} 1 \sqrt{1 + x^2} \, dx$ (e) $\int_0^{\pi} 1 \sqrt{1 + x^2} \, dx$ (f) $\int_0^{\pi} 1 \sqrt{1 + x^2} \, dx$ (f) $\int_0^{\pi} 1 \sqrt{1 + x^2} \, dx$ (g) $\int_0^{\pi} 1 \sqrt{1 + x^2} \, dx$ (h) $\int_0^{\pi} 1 \sqrt{1 + x^2} \, dx$ (e) $\int_0^{\pi} 1 \sqrt{1 + x^2} \, dx$ (f) $\int_0^{\pi} 1 \sqrt{1 + x^2} \, dx$ (f) $\int_0^{\pi} 1 \sqrt{1 + x^2} \, dx$ (g) $\int_0^{\pi} 1 \sqrt{1 + x^2} \, dx$ (h) $\int_0^{\pi} 1 \sqrt{1 + x^2} \, dx$

Question three

- (a) Given that $f(x) = 5x^2 + x 7$ determine (i) f(3+a) f(3) / a (ii) f(3) f(-1)
- (b) If $f(t) = 5t + 1/(t^3)^{1/2}$. Find $f^{(t)}(t)$ (ii) Differentiate $y = (x + 2)^2/x$ with respect to x.
- (c) Determine $\int 2x^3 3x / 4x \, dx$ (ii) $\int (1 + \theta)^2 / \theta^{1/2} \, d\theta$
- (d) Evaluate $\int_{-2}^{3} (4 x^2) dx$

Ouestion four

- (a) What is meant by eigenvalues and eigenvectors?
- (b) In most statistical analysis, why sample is preferred to population?
- (c) Evaluate $\int 3/5x d$
- (d) Determine $\int (2m^2 + 1/m) dm$

QUESTION FIVE

- (a) Find the derivative of $y = (8t^3-4t)^6$
- (b) Differentiate $y = 5 \tan^4 3x$
- (c) Given $y = 2xe^{-3x}$ Show that $d^2y/dx^2 + 6dy/dx + 9y = 0$